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Physics Department, Alzahra University, PO Box 19834, Tehran, Iran

Received 24 March 1993

Abstract. Non-standard quantum groups are very similar to quantum supergroups due to
nilpotency of their elements. We introduce a non-standard quantum supergroup in which
nilpotency of elements can be removed, .

1. Introdaction

In a recent paper [1], we introduced a multiparametric generalization of the non-standard R-
matrix of s{(n) and then applying the method of Faddeev—Reshetikhin-Tekhtajan (FRT) [2]
to this R-matrix, we constructed the quantum group associated with it, which was denoted
by X, (s!(r)) in {1]. The interesting property of this quantum group was the appearance of
nilpotency ih its structure, which was a sign of some super structure. In this article, we apply
the FRT method to the non-standard scolution of the graded Yang—Baxter equation, namely
the exotic solution of the GYBE corresponding to the superalgebra si/(n|m) and construct
the superalgebra associated with this R-matrix, which we call X;(s/(n|m)). The main new
features of this quantum supergroup are:

(i) Even elements may become nilpotent.
(i} Nilpotency of odd elements may be removed.

The structure of this article is as follows: in section 2 we introduce the non-standard form
of the s/(n|m) R-matrix. In section 3 we apply the methad FRT to this R-matrix and
construct the generalization of the universal enveloping algebra of si(n|m), which we call
X, (sl(n|m)). U,(slinim)) and Uy (sl(n +m)) are special cases of X,(s!(n|m)), and finally
in section 4 we recapitulate the results (of others [3,4] and ours) in a simple example,
corresponding to a (4 x 4) R-matrix.

2. The B-matrix

Consider a Z,-graded vector space V with dimension ¥, spanned by a basis {g],
i=1,...,N. x(e;) = m; is the Z-grade of ¢; then we have:

(a) For any matrix A, the Z,-grade of any element A;; is defined as 7; + 7;
wij =T 4w,
t E-mail address: Mohamadi@irearn.bitnet
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{b) The tensor product of two Z,-graded matrices is

(A @ B)jjm = {(—1)™™ ApBy (1
and the graded permutation matrix is
P =2 (-1)"ey ®ey. @
i f

Consider the following generalization of the s/(n|m) R-matrix

. N=ntm N=n+m N=n+m
R= Z e Dey -+ }: qle; @en+ (g — g h E (=D e;; Q ey
I#j i i)
3)
where

Q i=1,...,n
=1 i=n+1,...,0+m—1,¢ =", (e;)u = dudj

and each g; can independently be equal to ¢ or —g %, When a parameter ¢; is —q~!, we
call it a ‘twisted’ parameter. The standard R-matrix of si(n}m) is obtained by setting all
gi'sto g.

This R-matrix satisfies the GYBE

RizRi3Ry = RosRiz Riz. 4

In (4) one must take into account the graded nature of tensor products. The corresponding
braid matrix (B = PR, where P is the graded permutation matrix) satisfies the quadratic
equation

B’=(g—-q HB+1.

3. The structure of X, (sl(n|m))

In order to obtain the quantum supergroup associated with the R-matrix (3), we should
solve the basic equations of FRT

RLELE = LETIER RLYL; = LTLER. (5)

We take the following ansatz for L* matrices

B} S\
=Y kei+Y (q-q7") (qf’/qfﬁ‘) (0 2 (ki) 2 X F e
i=1 i=1

o\ 174
+ 2 ma (aa)) ) B ©

[<_,|"—

- = Zk,-_leﬁ - Z(CI ~q™H (g /qrﬂf,‘)l'l4 (=D 2 ok ) X €
=1 i=t

1/4
R ) D k) P E ey ©

{=1xj



A new non-standard quantum supergroup . 6975

solution of (3) leads to

kiks = ki . ©
(aq; —engi NXFY =0 ©)
XEXF=XFXF  izji+2 (10)
%Xj: = I_:EE"(&J“5""'1)‘1:;“(5”_31+Lf)X:_I:ki_+1 7 _ (n
4 -

Ik

[ 2TRT A

_ i+
[x;, X71=4d; + (12)

q-q7"
X7 EI"'T"?-]%” =0 (X7 E:_i+2]q,-ff“ =0 [X7 X;—Ff-l]q:{'“ = ’_E?-,i+2
' (13)
where [a, b], = ¢'2ab — (—=1)™7q~1/2pa.
Let us identify k:..1k; ' with g% ®; where
[Hi X71=ayX;  ay = @ = 8imt,)) + (1™ By = 8141 (14)

a;; is the Cartan matrix of s/ (nlm), H;'s are the generators of the Cartan subalgebra and the
©;"s are the new generators in the Cartan subgroup, to be determined shortly. From (11),
(14)

€ (Bip=0i=1,7} _€ra1 (B =dig,j)

d ] gl 4 i+1 .
OXF = X;O: o= e . (15)

Thus ©; can be written in the following form

& = [ Jlwr® *. ’ 7 (16)
ik
The final form of the algebia is '
(g — gt =0 an
[H;, H;] =0 : (18)
[H;, XF] = +a;XT (19
(X7, X;71=48; e _q__?m@f_l (20)
q—q 7 |
[XF X XL )y =0 21
X X X By = O . @
where (21) and (22) are Serre relations and are obtained by eliminating E"", 4z from {13).

In the non-standard case, where some of ¢;’s are equal to —¢~' the corresponding Serre
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relations become trivial identities. Indicating that a basis & la Poincare-Birkhoff-Witt,
cannot be constructed from the Chevalley—Serre presentation.

One then has to employ the full power of the FRT method and construct the algebra in
the Cartan basis. For the case of X, (s{(n)) this has been done in [5].

According to the general formalism of FRT this algebra is equipped with the Hopf
structure =

AXE = qiPeT @ XE + XF @ 47" 06)" 23)
AHi=1@H+H®l1 (24)
e(XF)=¢(H;) =0 (25)
S(XE) = —(qf g\ 2XF S(H) =-H, (26)

and it is clear that
A@)=6,80;, €@)=1 SE©)H=0]" (27)

Note the following special cases:

(a) If ¢ = g and m; = 0 then w;; = 1 and the ©;’s can be identified with unity. The
relations {17)~(26) will become the usual relations of Uy(si(n +m)).

by g =gandm =0fori=1,...,n,my=1fori =n+1,...,n+m— 1, then again
wij = 1 and the relations (17)~(26) will become the U,(s!(n|m)) superalgebra in the
Chevalley basis.

{c) If there is no restriction on the g;’s but x; = 0 then the relations (17)-(27) become the
algebra of X ,(s/(n 4+ m)) which we have discussed in [11.

(d) With a special format forg; =g fori = 1,...,n,q; = —g~' fori = n+1,...,n+m—1
and sy =0fori=1,...,n,7 =1fori =n+1,...n+m—1 we obtain 4 superalgebra
without any nilpotent elements.

In fact twisting and grading are very similar, by twisting or grading alone there exist
nilpotent elements. But if twisting and grading occur simultaneously, nilpotency will be
removed.

There is a well known relation between some of the solutions of QYBE and GYBE.
Consider a particular solution of GYEE, R for which ﬁ‘,-j,k; is zero unless J'l'(fé,’j’kf) =
7 + 7+ + 7 =0, then

Ryw = (—=1)"™ R o (28)

solves the QYBE. It can be shown that if R is associated with Ug(sl(nlm)) then R is associated
with X (sl(n -+ m)) [1] and if R is associated with X,(s!(n|m)) then R is associated with
U, (sl{n 4 m)). We used the multiparametric non-standard R-matrix of si(z 4- m) {1] to
obtain the multiparametric R-matrix of si{n|m) and then constructed the multiparametric
quantization of si{{(n|m) [6]. The same R-matrix has also been obtained in [7]. In the same

way, it is straightforward to use the multiparametric R-matrix of si(n 4 m) to construct the
multiparametric version of X, (si(n|m)).
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4. Universal R-matrix for X (GI(1]1)}

All the solutions of QYBE for the two-dimensional case were given in [8]. One of the
solutions is the non-standard R-matrix of G L{2) which is related to the R-matrix of G L)
via relation (28). As an illustration of the relation between twisting and grading, we derive
some quantum algebras corresponding to the following R-inatrix
q 0 -0 0
0 1 0 ¢
0 g—¢t 1 0
0 0 0 ¢

For the following choices of ¢, solutions of the QYBE and the GYBE, which are obtained
lead to standard or non-standard quantum (super) groups.

H ¢ =gq, m; =0 then R is a standard solution of QYBE, the associated QG is U, (G!(2)).

If ¢ = —g~', m; = O then R is an exotic solution of QYBE, the associated QG is
X4 (GI2)), '-

H¢ =g-!, m =0, 72 = 1 then R is a standard solution of GYBE, the associated QG is
(G

f{=—g,m =0, 7 =1 then R is an exotic solution of GYBE, the associated QG is
X (GI(1]1)).

It can be easily shown that the corresponding braid matrix B for the first and-fourth case
(and also for the second and third case) are the same and satisfies the following relation

B =(q —g HB+1.

The FRT equations together with the following ansatz for L% and L™ matrices

R= (29)

= (T e ) €
= H2K /2 0 . o
(_wﬁgmz—xnx—— ;-H/2+x/2) w=q-—q 31
lead to the following quantum algebra
[H, X*] = £2X* K,..]=0 (€199 — D) (X2 =0 (32)
X+, X"] = (q) " q/) " - (q'_tl)“'”z(qr/f;')"""2 33)
q9-q
where {a, b] = ab — (—1)™@"® by The comultiplications are
AH)=19H+H®1 AK=KQ@1+1®K (34)
AXT) = X" @1+ (g P/ o Xt (35)
AXT) =18 X~ + X~ @ ()" a/0)¥. - (36)

All the above algebras, which we denote by A in the following, are quasitriangular, that is
there exist universal R-matrices, R € A ® A which intertwine A and A’ = gpA, and also
have the following properties

(1@ AR = RisR» (3N
(A® )R = Ri3Ry. (38)
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For the standard cases quasitriangularity has already been shown [9-111,

In the following we shall give the universal R-matrix for the algebra (32)-(36). For
£ = g or g1 this R-matrix reduces to the R-matrix of U, (GI(2)) and U, (GI(1{1))
respectively, and for { = —g~' and —g, it gives the universal R-matrix of Xg(GI(2))
and X,(GI(1|1)). The R-matrix has the multiplicative form R = RK

K = (qi)/HOHHESK) (4 1) /4 HBK +KBH) (39)

-g& for the non-graded case

R=exp[-o(XT®@X = 40
Ppl—a ] P g for the graded case “o
where exp, is the p exponential function [11]
x" 1=p°
expy (1) =Y Ml = W@y (W= . 4D

nx0 (ﬂ)p! 1-p

As a check for the the validity of this R-matrix, we show that it actually intertwines AX™
and cpAXT in the algebra (32)-(36). By a straightforward calculation one can show that

KAXNKC = XY @ (g/0) 2 qe)i? + 1@ X7 42)
and

RXY®(q/0)Y @) + 1@ X™)
= (Xt @ (q/5) gty P+ 1@ XDHR

=gAXTR 43)

s0 RAX*R™! = RKAX+K-'R™" = A’X*, The same is true for other generators. By
using

(A ® 1)gHeH - gHIeH jlekaH @

one can verity that (37) and (38)-are also satisfied.

In [4] it has been shown that X,(GI(2)) can be superized to U,(GI(1{1)). We think
the same is true for U, (GI(2)) and X (GI(1|1)) and also more generally for the case
Xq(sl(n +m)) and Uy(si(nim) (Uy(si(n +m)) and X, (si(nfm))).
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