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A new non-standard quantum supergroup 
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Received 24 March 1993 

Abstract. Non-standard quantum groups are very similar 10 q i i u l m  supewoups due to 
nilpotency of lheir elements. We introduce a non-smndard quantum superpup in which 
nilpotency of elements can be removed. 

1. Introduction 

In a recent paper [ 11, we introduced a multiparametric generalization of the non-standard R- 
matrix of sl(n) and then applying the method of Faddeev-Reshetikhin-Tekhtajan (FRT) [2] 
to this R-matrix. we constructed the quantum group associated with it, which was denoted 
by X , ( d ( n ) )  in [ 11. The interesting property of this quantum group was the appearance of 
nilpotency in its structure, which was a sign of some super structure. In this article, we apply 
the FRT method to the non-standard solution of the graded Yang-Baxter equation, namely 
the exotic solution of the GYBE corresponding to the superalgebra sl(nlm) and Construct 
the superalgebra associated with this R-matrix, which we call X,(sl(n]m)).  The main new 
features of this quantum supergroup are: 

(i) Even elements may become nilpotent. 
(ii) Nilpotency of odd elements may be removed. 

The structure of this article is as follows: in section 2 we introduce ffie non-standard form 
of the sl(n1m) R-matrix. In section 3 we apply the method FRT to this R-matrix and 
construct the generalization of the universal enveloping algebra of sl(n]m), which we call 
X,(sl(nlm)). U,(sl(n]m)) and U,(sl(n + m ) )  are special cases of X,(sl(nlm)), and finally 
in section 4 we recapitulate the results (of others [3,4] and ours) in a simple example, 
corresponding to a (4 x 4) R-matrix. 

2. The R-matrix 

Consider a &graded vector space V with dimension N ,  spanned by a basis (el], 
i = 1, . . . , N. d e i )  

(a) For any matrix A,  the &-grade of any element Ajj is defined as ~i + H I  

?ri is the Zz-grade of ei then we have: 

Jp. = p r l  - t + H j .  

t Email address: Mohamadi@iream.biet 
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(b) The tensor product of two Zz-graded matrices is 

( A  8 B)ij,xi (-l)zkzJ'AikBji 

and the graded permutation matrix is 

P = x(-l)zrzieij eji. 
i#l 

Consider the following generalization of the sl(nlm) R-matrix 

(3) 

where 

xi = 

and each qi can independently be equal to 9 or -4-l. When a parameter qi is -9-l. we 
call it a 'twisted' parameter. The standard R-matrix of sl(n\m) is obtained by setting all 

i = l ,  ..., n 
i = n + 1, . . . , n + m - 1, ci = (-l)*', (eij)u E 6idji I: 

qi's to q. 
This R-matrix satisfies the GYBE 

I?lZI?13I?Z = I?231?,31?12. (4) 

In (4) one must take-ieto accounf the graded nature of tensor products. The corresponding 
braid matrix ( 5  = PR, where P is the graded permutation matrix) satisfies the quadratic 
equation 

8 2  = (q - q - ' ) B  + 1. 

3. The structure of X,(sZ(nlm)) 

In order to obtain the quantum supergroup associated with the I?-matrix (3). we should 
solve the basic equations of FRT 

(5 ) I?L:L: = L:L:I? I?Lz +L- , - - L-L+ zR. 
We take the following ansatz for L* matrices 



A new non-standard quantum supergroup 6915 

solution of (5) leads to 

rx', -E;+,1g = 0 [Xi=,, E;-+z1q3 = 0 rx'. XL,lq? =--E&+, 

(13) 

where [ a ,  bIq = q'l'ah - ( - l )n~nbq-l lzba.  
Let us identify kj+lk,:' with q"fiQi where 

[H;, xjl] = *aij$ a.. ,, - - (8.. '1 - 6 .  4 , j )  + (-I)='.'*'(sij - 8i+I,j) (14) 

aij. is the Cakm matrix of sl(nlm), Hi's are the generators of the Cartan subalgebra and the 
@i's are the new generators in the Cartan subgroup, to be determined shortly. From ( I I ) ,  
(14) 

si6,1-6,-~1 I e+, C6tj-Sr+,j) 

(15) @.. -~ 4; %+I  
11 - qw,l 

0;x; = O*'X*Q. 
' I  I ' 

Thus Q i  can be written in the following form 

where (21) and (22) are Serre relations and are obtained by eliminating E;+, from (13). 
In the non-standard case, where some of qi 's  are equal to -4-I the corresponding Serre 
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relations become trivial identities. Indicating that a basis b la Poincar+Birkhoff-Witt, 
cannot be constructed from the ChevalleySerre presentation. 

One then has to employ the full power of the FRT method and construct the algebra in 
the Cartan basis. For the case of X,(sl(n))  this has been done in [5].  

According to the general formalism of FRT this algebra is equipped with the Hopf 
structure 

(23) 

(24) 

f - - s f i l 2 0 ; ~ / =  @ x f  + x f  @ q; G;nf/z 0; 112 
AX; - q  

AH; = 1 @H; +Hi @ 1 

€ ( X ? )  = € ( H i )  = 0 (25) 

(26) SG; + ) - - - (9;'9;+1) e. e+l *:lP x; * S ( H ; )  = -Hi 

and it is clear that 

A(0;)  = 0; @ 0; E ( @ ; )  = 1 S ( 0 ; )  = 0;'. (27) 

Note the following special cases: 

(a) If qi = q and r; = 0 then o i j  = 1 and the 0;'s can be identified with unity. The 
relations (17H26) will become the usual relations of U,(sl(n + m)). 

(b) If 4; = q and r; = 0 for i  = 1,. . . ,n, r i  = 1 for i  = n+ 1 , .  . . , n +m - 1. then again 
ojj = 1 and the relations (17)-(26) will become the U,(sl(nIm)) superalgebra in the 
Chevalley basis. 

(c) If there is no restriction on the 4;'s but r; = 0 then the relations (17>-(27) become the 
algebra of X,(sl(n + m))  which we have discussed in [I]. 

(d) With a special format for q; = q for i = 1, . . . , n, qi = -q-' fori = n+ 1, . . . , n+m- 1 
andni = Ofori = 1, .  . . , n, ri = 1 fori  = n + l , .  . .n+m- 1 weobtain a superalgebra 
without any nilpotent elements. 

In fact twisting and grading are very similar, by twisting or grading alone there exist 
nilpotent elements. But if twisting and grading occur simultaneously, nilpotency will be 
removed. 

There is a well known relation between some of the solutions of QVBE and GYBE. 
Consider a particular solution of GYBE, d for which d ; j . k ~  is zero unless ?r(djj,kj.kl) = 
x; + rj + nk + = 0, then 

R;j.xi = (-1)""dij.ti (28) 

solves the QYBE. It can be shown that if k is associated with U,(sl(nlm)) then R is associated 
with X,(sl(n + m)) [I] and if d is associated with X,(sl(nlm)) then R is associated with 
U,(sl(n + m)).  We used the multiparametric non-standard R-matrix of sl(n + m)  [l] to 
obtain the multiparametric d-matrix of sl(nlm) and then constructed the multiparametric 
quantization of  sl(nlm) t61. The same k-matrix has also been obtained in [7]. In the same 
way, it is straightforward to use the multiparametric R-matrix of sl(n +m) to construct the 
multiparametric version of X, (sl(n Im)). 
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4. Universal &matrix for X,(GZ(IIl)) 

All the solutions of QYBE for the two-dimensional case were given i n  [B]. One of the 
solutions is the non-standard R-matrix of GL(2) which is related to the R-matrix of GL(lI1) 
via relation (28). As an illustration of the relation between twisting and grading, we derive 
some quantum algebras corresponding to the following R-matrix 

0 0 0  

R = ( %  0 q-q- ’  1 p) 0 ’ 

For the following choices of <, solutions of the QYBE and the GYBE, which are obtained 

If < =q, xi = 0 then R is a standard solution of QYBE, the associated QG is U9(Gl(2)).  
If < = -4-l. xi = 0 then R is an exotic solution of QYBE, the associated QG is 

If < = q-’, RI = 0, R2 = 1 then R is a standard solution of GYBE, the associated QG is 

If < = -4. RI = 0, Z z  = 1 then R is an exotic solution of  GYBE, the associated QG is 

It can be easily shown that the corresponding braid matrix B for the first and fourth case 

lead to standard or non-standard quantum (super) groups. 

x9 (cl@)). 

Uq(Gl(Il1)). 

X9(GKI 11)). 

(and also for the second and third case) are the same and satisfies the following relation 

B2 = (q - q- ‘ )B  + I 
The FRT equations together with @e following ansatz for L+ and L- manices 

lead to the following quantum algebra 

[H, X*] = 12X’ [K, ... I == 0 ( E I q ”  - G ~ < ) ( X * ) ~  = 0 

where [a, b] ab - (-l)nco’ncb’ba, The comultiplications are 

A ( X )  = 1 @ H +  H 63 1 AK = K @  1 + 1 63 K (34) 

(35) 

(36) 
All the above algebras, which we denote by A in the following, are quasitriangular, that is 
there exist universal R-matrices, R E A 63 A which intertwine A and A’ = UOA, and also 
have the following properties 

A(X+) = X+ 63 1 + (q<)-H’2(q/<)-K’2 63 X’ 

A(X-) = ~ l  63 X- + X- @ (q<)H’2(q/<)K/2. 

(1 63 A)R = R i d 1 2  (37) 

(A 63 1)R RI3R23. (38) 
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For the standard cases quasitriangularity has already been shown [9-11]. 
In the following we shall give the universal R-matrix for the algebra (32)-(36). For 

t = q or q-' this R-matrix reduces to the R-matrix of (I,(Gi(Z)) and U,(Gl(Ill)) 
respectively, and for < = -q-' and -4. it gives the universal R-matrix of Xq(G1(2)) 
and X,(G[(lI l ) ) .  The R-matrix has the multiplicative form R = Z K  

K = (q<) I14(H*H+K@K)(p,<)1/4(H*K+K@H) (39) 

- -q< for the non-graded case 
R = exp,[-o(x+ 8 x-11 p = { (40) Pb for the graded case 

where exp, is the p exponential function [ 1 1 1  

As a check for the the validity of this R-matrix, we show that it actually intertwines AXt 
and uoAX+ in the algebra (32H36). By a straightforward calculation one can show that 

K ( A X + ) I C - ~  = x+ (q/<)K/Z(qC)H/z + 1 @ x+ (42) 

and 

so RAX+R-' = x K A X + K - l r '  = A'X+. The same is true for other generators. By 
using 

(44) (A @ I ) ~ H @ H  - --4  4 H * W H  I @ H M  

one can verity that (37) and (38)-are also satisfied. 
In 141 it has been shown that Xq(G1(2)) can be superized to U,(GI(I[l)) .  We think 

the same is true for Uq(G1(2)) and Xq(GI(ll l))  and also more generally for the case 
X,(sl(n + m ) )  and U&l(n[m) (Cq(sl(n +m)) and X&(nIm))). 
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